Répartion équitable des dépenses

Le
Tatanka
Bonsoir,

Comment résoudre avec une macro le problème suivant ?
Quatre personnes nommées A, B, C et D donnent
respectivement 23$, 30$, 45$ et 2$ pour l'achat de
certains produits qui serviront à toutes ces personnes.
On décide alors de répartir équitablement le montant
total de 100$. Donc chaque personne aurait du payer 25$.
Question :
Qui doit combien à qui ?
Manuellement ça ne cause pas de difficultés même si le nombre
de personnes est plus grand que 4 et le total différent de 100.
Dans ce cas-ci, A doit 2$ au groupe et D, 23$.
Solution :
A donne 2$ à B
D donne 3$ à B et 20$ à C.
Comment aborder ce problème avec une macro quand
n personnes fournissent chacune un certain montant
et qu'il faudra répartir le total équitablement ?
Avez-vous des suggestions ?

Serge
Vidéos High-Tech et Jeu Vidéo
Téléchargements
Vos réponses Page 1 / 4
Gagnez chaque mois un abonnement Premium avec GNT : Inscrivez-vous !
Trier par : date / pertinence
Tatanka
Le #5240021
Avant que notre monsignore sévisse, veuillez
remplacer « Répartion » par « Répartition »
Je continue à me casser les dents sur mon
petit problème, mais avec des râteliers, c'est
moins douleureux ;-)

Serge, qui craint toujours les foudres de notre sainteté.


"Tatanka"
Bonsoir,

Comment résoudre avec une macro le problème suivant ?
Quatre personnes nommées A, B, C et D donnent
respectivement 23$, 30$, 45$ et 2$ pour l'achat de
certains produits qui serviront à toutes ces personnes.
On décide alors de répartir équitablement le montant
total de 100$. Donc chaque personne aurait du payer 25$.
Question :
Qui doit combien à qui ?
Manuellement ça ne cause pas de difficultés même si le nombre
de personnes est plus grand que 4 et le total différent de 100.
Dans ce cas-ci, A doit 2$ au groupe et D, 23$.
Solution :
A donne 2$ à B
D donne 3$ à B et 20$ à C.
Comment aborder ce problème avec une macro quand
n personnes fournissent chacune un certain montant
et qu'il faudra répartir le total équitablement ?
Avez-vous des suggestions ?

Serge







LSteph
Le #5239961
;o)
Bonsoir

lequel?

pour ton pb , on se moquerait bien d'envisager que qui doive devoir à qui
car
l'essentiel est juste de savoir qui doit combien
d'une part

soit en $
23+2%
dans l'exemple respectivement pour ceux qui on donné
2 et 23 soit A et D
on récupère donc 25$ au près de ceux là
ensuite plus qu'à répartir

donc à qui a donné plus, combien d'autre part


pour mettre cela en macro il faudrait d'abord convenir
de quel objet tu envisages pour représenter ABCD
ex (une cellule) et comment tu formalises
l'action de donner et de rembourser.


--
lSteph

Avant que notre monsignore sévisse, veuillez
remplacer « Répartion » par « Répartition »
Je continue à me casser les dents sur mon
petit problème, mais avec des râteliers, c'est
moins douleureux ;-)

Serge, qui craint toujours les foudres de notre sainteté.


"Tatanka"
Bonsoir,

Comment résoudre avec une macro le problème suivant ?
Quatre personnes nommées A, B, C et D donnent
respectivement 23$, 30$, 45$ et 2$ pour l'achat de
certains produits qui serviront à toutes ces personnes.
On décide alors de répartir équitablement le montant
total de 100$. Donc chaque personne aurait du payer 25$.
Question :
Qui doit combien à qui ?
Manuellement ça ne cause pas de difficultés même si le nombre
de personnes est plus grand que 4 et le total différent de 100.
Dans ce cas-ci, A doit 2$ au groupe et D, 23$.
Solution :
A donne 2$ à B
D donne 3$ à B et 20$ à C.
Comment aborder ce problème avec une macro quand
n personnes fournissent chacune un certain montant
et qu'il faudra répartir le total équitablement ?
Avez-vous des suggestions ?

Serge











Misange
Le #5239821
Salut Serge
Pas si simple comme problème. Puisque tu vas recevoir office 2007, tu
pourras étiduer comment le 3° ou4° gagnant du concours logitech a réglé
ce pb. La soluce utilise le solveur piloté par un exe et 2 dll associées
:-). Ce serait sympa de faire plus simple ! joli défi que tu t'es lancé
:-). Je prends le résultat (si tu veux bien sur !). Bon dimanche l'ami,
au lieu de regarder tomber la neige, regarde tomber les dollars de la
poche de B vers A...
--
Misange migrateuse
XlWiki : Participez à un travail collaboratif sur excel !
http://xlwiki.free.fr/wiki
http://www.excelabo.net
Modeste
Le #5239791
Bonsour® Tatanka avec ferveur ;o))) vous nous disiez :

Comment résoudre avec une macro le problème suivant ?
Quatre personnes nommées A, B, C et D donnent
respectivement 23$, 30$, 45$ et 2$ pour l'achat de
certains produits qui serviront à toutes ces personnes.
On décide alors de répartir équitablement le montant
total de 100$. Donc chaque personne aurait du payer 25$.
Question :
Qui doit combien à qui ?
Manuellement ça ne cause pas de difficultés même si le nombre
de personnes est plus grand que 4 et le total différent de 100.
Dans ce cas-ci, A doit 2$ au groupe et D, 23$.
Solution :
A donne 2$ à B
D donne 3$ à B et 20$ à C.
Comment aborder ce problème avec une macro quand
n personnes fournissent chacune un certain montant
et qu'il faudra répartir le total équitablement ?
Avez-vous des suggestions ?


sans macro !!!!
ce qui tendrait à dire que je n'ai rien compris !!!!
http://cjoint.com/?cylJfv3Vrj

--
--
@+
;o)))

Misange
Le #5239731

sans macro !!!!
ce qui tendrait à dire que je n'ai rien compris !!!!
http://cjoint.com/?cylJfv3Vrj
ben non t'as fait que le début, assez évident.

La vraie question c'est comment ramener tout le monde à 0 : qui donne
combien à qui de façon à minimiser le nombre de transfert de sous entre
les participants.
Mon raisonnement serait :
identifier celui qui doit le plus à la communauté et lui faire donner
des sous à celui à qui on en doit le plus puis recommencer jusqu'à
épuisement. MAis il y a peut être plus simple.
--
Misange migrateuse
XlWiki : Participez à un travail collaboratif sur excel !
http://xlwiki.free.fr/wiki
http://www.excelabo.net

Modeste
Le #5239701
Bonsour® Misange avec ferveur ;o))) vous nous disiez :

La vraie question c'est comment ramener tout le monde à 0 : qui donne
combien à qui de façon à minimiser le nombre de transfert de sous
entre les participants.


;o)))
la solution en effet : "*minimiser le nombre de transfert entre participants*"
consiste bien comme au casino à passer par un banquier qui encaisse et
redistribue

ce qui correspond aux pires des cas :
- un seul cochon de payant qui fait crédit à tous les autres ;o)))
- son inverse : un seul "*déshérité*" qui est débiteur de tous les autres

sorti de cet aspect des choses
ta proposition :
identifier celui qui doit le plus à la communauté et lui faire donner
des sous à celui à qui on en doit le plus puis recommencer jusqu'à
épuisement.
conduit inéluctablement à un nombre de boucles croissant de façon exponentielle

avec le nombre de participants
n^(n-1)

;ox bon zanni !!!



--
--
@+
;o)))

Modeste
Le #5174041
nombre de transferts pour les cas extremes :

pas un, n'a donné la meme somme : (n-1)(n)/2
tous ont donné la meme somme sauf un : n-1

--
--
@+
;o)))
Misange
Le #5174021
la solution en effet : "*minimiser le nombre de transfert entre participants*"
consiste bien comme au casino à passer par un banquier qui encaisse et
redistribue
Oui ben si t'as un pote prêt à payer les dépenses de 20 personnes

pendant des vacances communes tu le dis ! :-)
Cela dit, passer par un banquier temporaire qui collecte tout ce que
chacun doit et redistribue à ceux à qui on doit simplifie la question
mais je ne crois pas que ce soit ce que Serge a dans la tête.


sorti de cet aspect des choses
ta proposition :
identifier celui qui doit le plus à la communauté et lui faire donner
des sous à celui à qui on en doit le plus puis recommencer jusqu'à
épuisement.
conduit inéluctablement à un nombre de boucles croissant de façon exponentielle

avec le nombre de participants
n^(n-1)
Certes et ce n'est qu'une proposition. Qu'est ce qui pourrait être plus

rapide sur le principe ?


;ox bon zanni !!!
A toi aussi compère.


--
Misange migrateuse
XlWiki : Participez à un travail collaboratif sur excel !
http://xlwiki.free.fr/wiki
http://www.excelabo.net


PST
Le #5173741
Bonsoir

Trouvé ce fichier sur :

://www.excel-downloads.com/remository/Download/Autres/Divers/Equit-Table. html

EQUIT’ TABLE a été conçu pour répartir de manière la plus é quitable
possible des valeurs entre plusieurs participant(e)s.

si cela peut servir

la solution en effet : "*minimiser le nombre de transfert entre
participants*"
consiste bien comme au casino à passer par un banquier qui encaisse et
redistribue
Oui ben si t'as un pote prêt à payer les dépenses de 20 personnes

pendant des vacances communes tu le dis ! :-)
Cela dit, passer par un banquier temporaire qui collecte tout ce que
chacun doit et redistribue à ceux à qui on doit simplifie la questi on
mais je ne crois pas que ce soit ce que Serge a dans la tête.


sorti de cet aspect des choses
ta proposition :
identifier celui qui doit le plus à la communauté et lui faire do nner
des sous à celui à qui on en doit le plus puis recommencer jusqu' à
épuisement.
conduit inéluctablement à un nombre de boucles croissant de faço n

exponentielle avec le nombre de participants
n^(n-1)
Certes et ce n'est qu'une proposition. Qu'est ce qui pourrait être pl us

rapide sur le principe ?


;ox bon zanni !!!
A toi aussi compère.






Misange
Le #5173701
Trouvé ce fichier sur :

EQUIT’ TABLE a été conçu pour répartir de manière la plus équitable
possible des valeurs entre plusieurs participant(e)s.
Merci mais ce n'est pas la même problématique (rembourser <> répartir).

Voyons ce qu'en dit notre Tatanka international
--
Misange migrateuse
XlWiki : Participez à un travail collaboratif sur excel !
http://xlwiki.free.fr/wiki
http://www.excelabo.net

Publicité
Poster une réponse
Anonyme